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Toward Full Autonomous Laboratory Instrumentation
Control with Large Language Models

Yong Xie,* Kexin He, and Andres Castellanos-Gomez*

The control of complex laboratory instrumentation often requires significant
programming expertise, creating a barrier for researchers lacking computational
skills. This work explores the potential of large language models (LLMs), such as
ChatGPT, to enable efficient programming and automation of scientific equipment.
Through a case study involving the implementation of a setup that can be used as a
single-pixel camera or a scanning photocurrent microscope, it is demonstrated
how ChatGPT can facilitate the creation of custom scripts for instrumentation
control, significantly reducing the technical barrier for experimental customization.
Building on this capability, it is further illustrated how LLM-assisted tools can be
used to develop autonomous agents capable of independently operating laboratory
instruments. This approach underscores the transformative role of LLM-based
tools in democratizing laboratory automation and accelerating scientific progress.

1. Introduction

Scientific instrumentation is a cornerstone of modern
research, enabling discoveries across a wide range of disciplines.
Innovations such as the scanning tunneling microscope (STM),
super-resolution microscopy, and transmission electron micros-
copy (TEM) have enabled atomic-scale imaging, advanced
biological imaging, and structural analysis of quantum materials,
respectively." These breakthroughs exemplify how instrumenta-
tion drives progress by providing researchers with tools to probe
the unknown.

However, while the development of new instruments is
critical, effectively utilizing existing laboratory equipment
remains challenging for many research groups. Scientific
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instruments often rely on sophisticated
control software for workflow automation
and data acquisition."” Developing such
software traditionally demands significant
programming expertise, creating a barrier
for researchers who may lack computa-
tional backgrounds. Consequently, many
laboratories depend on commercially avail-
able equipment with proprietary software.
While these tools simplify basic operation,
they often lack the flexibility needed for
custom experimental setups, limiting their
potential for innovation.

Recent advancements in artificial
intelligence (AI) have revolutionized scien-
tific workflows, enabling tasks such as
predicting material properties, uncov-
ering structure—property relationships, and
accelerating materials discovery.'***! However, these Al-driven
solutions frequently require custom software and programming
expertise, rendering them inaccessible to groups without strong
computational resources. This gap highlights the need for
more accessible approaches to leveraging Al technologies for
laboratory automation and instrumentation control.

Large language model (LLM)-based tools, such as ChatGPT,
provide a promising solution to this challenge. These models
have already demonstrated their utility in diverse research tasks,
including drafting scientific manuscripts,****! uncovering
structure—property relationships,*® proposing novel scientific
hypotheses,!’”"*® and even contributing as peer reviewers.!!>*"!
Beyond these applications, LLM-based tools offer an intuitive
interface for generating and refining programming code, stream-
lining the automation of experimental workflows. By translating
natural language instructions into executable commands, these
models empower researchers to communicate effectively with
scientific equipment, enabling custom workflows without
extensive programming knowledge. For instance, systems like
ORGANA (a robotic assistant that autonomously performs lab
tasks based on natural language instructions) demonstrate
how LLM-based tools can automate diverse chemistry experi-
ments, reducing manual workload and enhancing efficiency.*"
Similarly, studies have highlighted the role of LLM-based tools in
accelerating materials discovery through high-throughput
experimentation and data-driven strategies. These developments
signify a shift toward more autonomous, flexible, and efficient
laboratory environments, aligning with the goals of self-driving
labs and Al-assisted research.['~**

LLM-based tools can also address a critical pain point in labo-
ratories: the difficulty of controlling specialized instruments that
are poorly supported by user communities. To date, LLM-based
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programming has already demonstrated control capabilities over
relatively simple devices (e.g., power supplies, robotic arms, or
basic measurement units) typically through static scripts with
limited interaction or adaptability.*>=*! More significantly, only
a few studies have systematically explored the use of Al agents
capable of autonomously interpreting user intent, managing
experimental context, and executing complete control sequences,
representing an essential step toward achieving intelligent and
autonomous laboratory systems.

In this article, we demonstrate the application of ChatGPT to
streamline the control of commercially available scientific equip-
ment. Through a case study involving the control of a set of
hardware that can be used to implement a single-pixel camera sys-
tem or a scanning photocurrent microscope, we illustrate how
researchers can use LLM-based tools to iteratively develop func-
tional scripts, simplifying the programming of complex setups.
This approach highlights the potential of LLM-based tools to
democratize laboratory automation and make advanced experi-
mental configurations accessible to a wider scientific community.

2. Results and Discussion

We begin with the implementation of the hardware setup to
demonstrate a single-pixel camera system, providing an illustra-
tive example of how LLM-based tools can assist in hardware
control and automation. Figure 1 outlines the pipeline for
using LLM-based tools in instrumentation control. The process
starts with the researcher selecting a programming language
(MATLAB or Python) and planning the hardware configuration.
We assembled a minimal working setup to construct either a
scanning photocurrent system or a single-pixel camera, both
widely used in optoelectronics research.?®!

In this setup, the Keithley 2450 source measure unit (SMU)
applies a bias voltage and measures the current of a photodetec-
tor, while a motorized stage (Standa 8MTF-75LS05, 107 291,
107 293, Standa Controller model 8SMC4-USB-B9-2) provides
precise XY movement. The communication protocols for the
equipment were identified based on manufacturer documenta-
tion: the Keithley 2450 communicates via VISA protocol over
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USB connection, and the Standa XY stage communicates
through a USB serial (COM) port.

Control scripts for both instruments were iteratively gener-
ated through interactions with ChatGPT. While the VISA-based
communication of the Keithley SMU is widely supported by
general-purpose instrument libraries, the Standa stage required
handling a more specialized protocol. To demonstrate the
versatility of the LLM-based approach, we applied the same
prompt-driven code generation method to this non-standard
interface, incorporating information from the manufacturer’s
documentation into the LLM prompts and refining the code
iteratively based on system feedback. Once data were collected,
the datasets were saved and visualized using scripts refined
through user prompts.

After assembling the hardware components and making the
necessary connections, we outlined the system’s operation to
guide code generation. The XY stage moves the sample in a
raster scan pattern, covering the entire area to be imaged. At each
pixel position, the stage halts momentarily for measurement.
The SMU applies a bias voltage to the CdS photodetector and
measures the photocurrent generated by light reflected from
the sample. A fiber-based reflection probe (Thorlabs RP24)
connected to an LED is used for illumination and collection
of reflected light. This photocurrent directly correlates with
the intensity of light reflected from the sample at each pixel.
As the scan progresses, variations in photocurrent are recorded,
enabling the construction of a detailed reflectance map that
highlights areas with differing optical properties and reveals sur-
face features.

Figure 2a shows a flowchart that outlines how the XY stage is
integrated with the Keithley 2450 source measurement unit,
breaking the instrumentation control into distinct tasks. At each
step in the flowchart, a user prompt generated by the LLM helps
configure and test the relevant hardware control or data acquisi-
tion code. Figure 2D presents a typical example of such a prompt,
which focuses on dividing the coding procedure into small, man-
ageable segments. This segmentation enables rapid testing and
iterative user feedback at each stage, ensuring that any issues can
be identified and resolved before proceeding.

Human Interaction ChatGPT
3 @
[ -]
Computer-instruments I T 1
Interface
...... Datasets
Plot &Save
1) NDRY
Instruments : s -
Keithley 2450 Standa XY stage TENMA Plot & Save

Figure 1. Workflow of the LLM (ChatGPT)-based instrumentation control. After identifying the computer—instrument interfaces, the instruments are
controlled using scripts generated in response to human prompts through a large language model (e.g., ChatGPT).
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Prompt 1- input

Write MATLAB code to initialize and set up a Standa XY stage with the serial number 8SMC4-USB-B9-2

using the libximc library. The XY stage uses the COM3 and COM4 ports. Can you write from the very
basic, simple code, and step by step, stop at every step for me to confirm it works (and give me
the feedback if it is successful, then can process to the next step) to reach the goal here for me?
Clear all the connections and make sure give a fresh start before the measurement! Use the following
code snippet to load the library (Please do not change this part), ensuring compatibility with a 64-bit

Windows system.

\ZENe=n)

Prompt 2- input

Write MATLAB code to control a Keithley 2450 SourceMeter using the VISA interface. The code should
connect to the instrument using its VISA resource name, reset it, configure it to source a specific voltage
(e.g., 0.01 V), and set it to measure DC current. Can you write from the very basic, simple code, and
step by step, stop at every step for me to confirm it works (and give me the feedback if it is
successful, then can process to the next step) to reach the goal here for me? Clear all the
connections and make sure give a fresh start before the measurement!

\Lrrees)

Prompt 3- input

Control the Standa to move and measure the current at each spot with the same voltage of 0.1 V. Then
plot the results afterwards. Can you write from the very basic, simple code, and step by step, stop at
every step for me to confirm it works (and give me the feedback if it is successful, then can
process to the next step) to reach the goal here for me? Clear all the connections and make sure

give a fresh start before the measurement!

">

b4

Prompt 4- input

Save the datasets with the timestamp. Can you write from the very basic, simple code, and step by
step, stop at every step for me to confirm it works (and give me the feedback if it is successful,
then can process to the next step) to reach the goal here for me?

< J

Figure 2. Typical prompts used in LLM-based instrumentation illustrate the STEP approach (segment, test, evaluate, proceed). a) The flow chart of the
process to combine the movement of stage with the Keithley 2450 source measurement unit. b) The typical prompt used for the corresponding interac-
tion with each block in (a). The key point is breaking the coding process into small steps so the user can quickly review and adjust the code through

interaction with ChatGPT.

A key factor in this iterative approach is obtaining feedback
early in the process to verify that the generated code functions
correctly. To achieve this balance between efficiency and accu-
racy, the STEP approach (segment, test, evaluate, proceed) was
developed. The typical prompt “Can you write from the very basic,
simple code, and step by step, stop at every step for me to confirm it
works (and give me the feedback if it is successful, then proceed to the
next step) ?” was employed during the first three steps shown in
Figure 2. This approach demonstrates how LLM-based methods
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can simplify and streamline instrument control, even for users
with limited programming experience.

Figure 3(a) illustrates the hardware configuration used to
implement a single-pixel camera, which includes the fiber-
coupled LED light source, the Standa XY stage, the photodetec-
tor, and the Keithley 2450 source measurement unit. The optical
path relies on a Thorlabs reflection probe (RP25) with a leg that
directs and collects the light signal. Figure 3(b) provides a 3D
rendering, showing the fiber positioned over the sample. The
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Figure 3. The hardware and results of the scanning photocurrent image building using the ChatGPT-based instrumentation. a) The hardware assembly of
the LED, photodetector, and the scanning Standa XY stage connected with the Thorlabs reflection probe with linear leg (RP25). b) A zoomed-in 3D
representation of the optical fiber on the “2D Foundry” logo. A cartoon explaining the snake-like pattern raster scanning is shown besides. ) The scanning
photocurrent image captured by the code generated with ChatGPT. The inset shows a photograph of the test sample, fabricated by laser-cut aluminum foil

onto a black paper.

setup employs a “snake-like” raster scanning, as depicted in
Figure 3(c). The code generated by ChatGPT acquires and
plots the measured photocurrents, producing a final image of
the scanned region. The inset of Figure 3(c) shows an actual
photograph of the laser-cut aluminum foil mounted on black
paper, which corresponds well with the features observed in
the scanning photocurrent map. This demonstration highlights
how LLM-based instrumentation can streamline optoelectronic
measurements and data visualization, even for users with
minimal coding experience. Scanning photocurrent mapping
systems are widely used as spatially resolved tools for probing
photoresponse channels.'” Figure 4 illustrates the adaptation
of the ChatGPT-based instrumentation to perform scanning
photocurrent mapping with minor modifications to the setup.
In this configuration, a fiber-coupled LED light source illumi-
nates with a focused spot, using a focusable collimator, onto
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the surface of a CdS photodetector, see Figure 4(a). During
the raster scanning process, photocurrent measurements are
recorded using the Keithley 2450 while the Standa XY stage
moves across the sample, see Figure 4(a). The same
ChatGPT-generated code was employed for this setup, enabling
a “snake-like” raster scanning pattern with 200 x 120 steps,
see Figure 4(b). The resulting photocurrent mapping, shown
in Figure 4(c), clearly resolves spatial inhomogeneities in the
photodetector’s photocurrent response. This demonstration
highlights the effectiveness of ChatGPT-based instrumentation
for producing high-resolution, spatially resolved measurements,
even in straightforward experimental setups.

To demonstrate the effectiveness of our methodology, we
employed ChatGPT-4.1 to develop an autonomous Al agent capa-
ble for laboratory instrumentation control. The agent itself was
built using the same iterative, prompt-driven approach described

© 2025 The Author(s). Small Structures published by Wiley-VCH GmbH
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Figure 4. Scanning photocurrent mapping of a commercial photodetector using the ChatGPT-based instrumentation. a) The hardware assembly includes
an LED light source, a photodetector, and the scanning Standa XY stage, connected via a Thorlabs optical fiber (M28L03). b) A close-up view of the
collimator directing collimated light onto the CdS photodetector. c) The photocurrent mapping image generated using code created with ChatGPT. The

inset shows an optical image of the CdS photodetector.

in Figure 2. As shown in Figure 5a, we began by establishing a
Python interface to the OpenAl API and then used ChatGPT to
generate the initial version of the agent code.

The resulting agent, illustrated in Figure 5b, operates in a
closed loop: it sends prompts to the OpenAl API, receives
Python code in response, executes the code to interact with a
Keithley 2450 SourceMeter, and then uses the resulting output
or error messages to formulate refined follow-up prompts. This
process continues autonomously until the task is completed.

The agent’s operation relies on a structured sequence of mes-
sages sent to the OpenAI API: a system message defines its role
and behavior (e.g., “You are an expert Python lab automation
agent...”), while user messages provide instructions and guide
the task (e.g., “Start by listing VISA resources...” and “Continue
building and refining the I-V sweep script until complete”). In this

Small Struct. 2025, 6, 2500173 2500173 (5 of 7)

framework, the system message sets the assistant’s identity and
constraints, whereas user messages simulate instructions from a
human operator. Through this iterative dialog, the agent progres-
sively generated a series of executable scripts (autolab_code_
iter*.py) to automate an I-V sweep with the Keithley 2450, as
shown in Figure 5c. The final result, the -V characteristics of
a photoresistor, is shown in Figure 5d. Full agent logs and gen-
erated code are provided in the Supplementary Information.
While our ChatGPT-based agent demonstrates reliable perfor-
mance in automating stepwise experimental tasks such as -V
sweeps, current LLMs are not yet optimized for real-time
control or experiments requiring rapid feedback and sub-second
decision-making. Additionally, LLM-based automation raises
ethical and safety concerns, including the risk of misoperation,
data security, and regulatory compliance issues. To mitigate
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SourceMeter using PyVISA. "

"At each step, your code should automatically catch and print anyexceptions or
errors. "

"If the last execution printed an error, the next reply should be acorrected Python
code block to fix it.

2. AUTONOMOUS LAB AGENT LOOP

# The KEY: always remind the model of the goal and to keep building!
goal_reminder =

"Now, continue to the next step toward a full, robust, automated I-V sweep script for
Keithley 2450: "

"connect, reset, sweep -5V to 5V, measure current, save results,plot, fit resistance,
handle errors, always clean up. "

"If the previous code succeeded, add the next function. If error,fix it. Never stop,
always move forward."

Keithley 2450
(C) /import sys N (d)
import os le—6 I-V Sweep
import time 1.00 4
import traceback ' —o— |-V data
from datetime import datetime
0.75 4
def list_visa_resources():
try: 0.50 A
import pyvisa
rm = pyvisa.ResourceManager() < 0.254
resources = rm.list_resources() Y
print("VISA Resources found:") S 0.00
for res in resources: g ’
print(f'{res}") O —0.25 4
return resources ’
except Exception as e:
print(f"[ERROR] Failed to list VISA —0.50 1
resources:{e}")
return(] —0.75 A
def connect_keithley2450():
try: T T T T T
pyvisa -4 -2 0 2 4
Voltage (V)

Figure 5. Toward a fully autonomous laboratory workflow for instrumentation control using an Al Agent. a) Overview of the automated control pipeline: a
human operator interacts with ChatGPT to generate code that interfaces with the Keithley 2450 SourceMeter via the OpenAl API. The system iteratively
refines the code based on execution feedback. b) Structure of the Al agent, including the initial system prompt and the autonomous execution loop guided
by goal reminders. c) Example Python code segment generated by the agent to identify VISA resources and initialize communication with the instrument.
d) Current-voltage (I-V) sweep measured using the final Python script produced by the agent, showing successful instrument control and data

acquisition.

these risks, we recommend testing generated code in sandboxed
environments under human supervision, adhering to laboratory
safety protocols. For applications involving sensitive data, the use
of locally deployed models is advisable. Future developments
may benefit from hybrid architectures combining LLM agents
with real-time control systems and rule-based safety layers.

3. Conclusions

This study demonstrates the transformative potential of large lan-
guage models, exemplified by ChatGPT, in laboratory automa-
tion. By enabling researchers to efficiently program and
control complex instrumentation, LLMs address a critical

Small Struct. 2025, 6, 2500173 2500173 (6 of 7)

challenge in experimental science. Our case study of a single-
pixel camera system and scanning photocurrent mapping system
underscores the feasibility and effectiveness of this approach,
paving the way for broader adoption of Al-driven tools in scien-
tific research. The integration of LLM-based tools into laboratory
workflows holds the promise of fostering innovation and acces-
sibility, driving a new era of flexible, efficient, and customized
scientific experimentation.

4. Experimental Section

Code Generation with Al Language Models: ChatGPT (GPT-4o, and o3,
ChatGPT 4.1) was used to generate the code used in this manuscript.
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