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ABSTRACT: Two-dimensional materials are expected to play an
important role in next-generation electronics and optoelectronic
devices. Recently, twisted bilayer graphene and transition metal
dichalcogenides have attracted significant attention due to their unique
physical properties and potential applications. In this study, we describe
the use of optical microscopy to collect the color space of chemical
vapor deposition (CVD) of molybdenum disulfide (MoS2) and the
application of a semantic segmentation convolutional neural network
(CNN) to accurately and rapidly identify thicknesses of MoS2 flakes. A
second CNN model is trained to provide precise predictions on the
twist angle of CVD-grown bilayer flakes. This model harnessed a data
set comprising over 10,000 synthetic images, encompassing geometries
spanning from hexagonal to triangular shapes. Subsequent validation of
the deep learning predictions on twist angles was executed through the second harmonic generation and Raman spectroscopy. Our
results introduce a scalable methodology for automated inspection of twisted atomically thin CVD-grown bilayers.
KEYWORDS: Twist angles, Transition metal dichalcogenides (TMDs), Deep learning, OpenCV, Raman

Inspired by magic-angle graphene,1,2 twisted bilayer
graphene and transition metal dichalcogenides (TMDs)

have emerged as a promising platform for the study of Moire ́
physics, encompassing a range of phenomena such as Hubbard
physics,3,4 superconductivity,5 or valley polarization.6 The twist
angle in TMD bilayers can significantly alter their correlated
electronic phases and their optical properties.7 For example, in
the twist angle (2° ≤ θ < 6°), low-frequency interlayer shear
and layer breathing modes exhibit rapid change with the twist
angle θ.8 Additionally, the formation of the moire ́ Brillouin
zone introduces new energy subbands in twisted MoS2 bilayers
with twist angles close to 0° or 60°9 or high-lying excitons in
bilayer WSe2, which can be tuned over 235 meV by enforcing
different twist angles in the range 0° to 60°.10 The electric field
control of the 2H bilayer MoS2 interlayer exciton at room
temperature is possible due to the out-of-plane electric
dipole.11 Chemical vapor deposition (CVD) can be used to
fabricate bilayer graphene12 and bilayer TMDs with different
twist angles,13−17 i.e., different stacking arrangements between
the two layers. Typically, only 0° (AA stacking, or 3R) or 60°
(AB stacking, or 2H) arrangements are possible for the second
layer on bilayer TMDs, as these are energetically more
favorable.16,18 Reflectivity spectra have shown an A and B
exciton energy difference of 49 meV between the 2H and 3R
bilayer MoS2.

15 Reverse-flow chemical vapor epitaxy provided

a way to controllably grow high-quality bilayer TMD single
crystals with different growth temperatures.16

Second harmonic generation (SHG) spectroscopy is
frequently employed to characterize the twist angles of
TMDs.19,20 This reliable method determines the orientation
of exfoliated flakes and subsequently enables the stacking of
homo- or heterolayers using a dry transfer technique.21−23 In
addition to SHG, differential reflectance spectroscopy can also
be used for characterizing TMDs, specifically by identifying
twist angles through the transition of interlayer excitons.15,24

Raman spectroscopy, particularly low wavenumber Raman
spectroscopy,25,26 is another common method used for this
purpose.8,16,27−29 For cases where atomic precision is required,
transmission electron microscopy (TEM) can be employed to
determine the twist angles of graphene.30 Further augmenting
the atomic precision of characterization techniques, scanning
tunneling microscopy (STM) offers local probing of twist
angles with atomic level resolution.31 Although accurate and
reliable, these experimental techniques are costly, require
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specialized equipment, and are time consuming. It is therefore
desirable to develop alternative structural characterization
techniques that are cost-effective, fast, and easily implemented
without compromising accuracy and reliability.

Although the thickness of two-dimensional (2D) materials is
normally confirmed by atomic force microscopy (AFM),
Raman, etc.,32 optical contrast is frequently adopted by
experienced researchers due to its speed and simplicity.33

Recent developments in artificial intelligence (AI) have led to

the adoption of new techniques for processing microscopy
image data sets of layer thicknesses, edges, dimensions,
etc.34−36 For example, an autonomous robotic search and
stacking of graphene flakes was proposed to detect up to 400
monolayer graphene samples in 1 h.34,35 Unsupervised
Machine Learning (ML) and Deep Learning (DL) techniques
have been used to classify 2D materials into different
categories.37−40 In combination with an automatic optical
microscope stage, the desired 2D materials can be searched

Figure 1. Identification and analysis of optical micrographs of CVD-grown bilayer atomically thin materials (e.g., TMDs) using deep learning.
Images of the TMDs are shown as an example. (a) Original optical micrographs (OMs) captured by an optical microscope. (b) Images processed
and labeled using LabelMe, followed by training via a convolutional neural network (CNN) employing various classification methods. (c) Typical
outcomes of the TMD thickness derived from the processing in step (b). (d) The regression CNN model trained by the artificially generated data
set for twist-angle prediction. (e) Twist angles predicted by using the CNN model from (d) are shown at the left corner at each image. Scale bar: 10
μm.

Figure 2. Segmentation techniques for classifying thickness in atomically thin CVD-grown bilayer flakes. (a) Optical micrographs of a bilayer MoS2
flake. (b,c) Detail of the labeling for single and bilayer regions. (d) Final labeled result identifying thickness variations. (e) Explains the color labels,
correlating colors to specific thickness levels. (f) Optical micrographs of another bilayer flake used as a test image. (g−n) Four CNN models and
segmentation results employing DeepLabV3, FCN, LR-ASPP, and U-Net models, respectively. Notably, the U-Net model excels in recognizing the
contours of imperfect triangular flakes. Scale bar: 10 μm.
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automatically.39 However, to the best of our knowledge, no
automatic procedure for determining the twist angle in bilayer
atomically thin materials (e.g., TMDs and graphene) has been
described up to now. Presumably, the DL model may lack
sufficient accuracy due to the absence of adequate
experimental data for training.

In this work, a systematic methodology is reported that
demonstrates the potential of DL and image processing tools
for determining the twist angles in CVD-grown bilayer TMDs
and graphene. Specifically, we trained four different DL
algorithms to identify the thickness of the CVD-grown flakes.
The twist angle in individual bilayer TMD flakes can be
estimated by means of image processing tools, such as
implemented in OpenCV.41 This procedure, illustrated
below, is nevertheless slow and not effective for large-scale
sample analysis. To circumvent this problem, we developed a
second DL model to characterize the twist angle of individual
flakes in an efficient way. All codes and data sets are open
access and freely available, provided with user-friendly
instructions. Our work aims to provide new tools designed
to facilitate and make more effective structural character-
izations of CVD-grown twisted TMD samples, with extended
applicability to CVD-grown graphene and hexagonal boron
nitride (h-BN) and other CVD-grown 2D materials.

In our study, optical micrographs of CVD-grown bilayer
atomically thin materials are captured as shown in Figure 1 (for
MoS2) and supplementary for graphene (Figure S15).12 These

images are then processed and utilized to train a convolutional
neural network (CNN) for the identification of flake thickness.
Subsequently, a different CNN model, developed using a
synthetic data set, is used to predict the twist angles of the
flakes, with these predictions displayed on the corresponding
images. The workflow diagram of the process to identify the
twist bilayer of TMDs is visually shown in Supporting
Information Figure S1.

We utilized deep learning techniques to determine the
thickness of atomically thin flakes, harnessing a supervised
neural network trained on manually labeled images. These
atomically thin flakes were initially distinguished by optical
contrast and subsequently verified through AFM and Raman
spectroscopy,13,14 as detailed in Supporting Information
Section 1.1.

Figure 2 showcases the adeptness of our segmentation DL
models in classifying flakes into monolayer (1L), bilayers (2L),
and thicker layers (TL) with remarkable precision, as further
elaborated in Figure 2 and Figure S7. Figure 2(a) shows an
original unprocessed microscopy image. Figures 2(b−e)
illustrates the manual labeling of background, monolayer,
bilayer, and thick layers.

In our evaluation, four DL models were rigorously tested:
DeepLabV3,42 Fully Convolutional Network (FCN),43 Mobi-
leNetV3 (LR-ASPP),44 and U-Net,45 each employing distinct
segmentation strategies and architectures. For instance,
DeepLabV3 integrates a backbone architecture for feature

Figure 3. Deep learning approach for recognizing twist angles in atomically thin bilayer flakes. (a) Synthetic data sets illustrating varying twist
angles in uniformly colored MoS2 flakes postsegmentation. (b) ResNet CNN model training using the linear regression approach on the data sets
from (a). (c) The detailed structure of ResNet with input training synthetic data sets and output twist angles of the data sets. (d) Prediction of twist
angles for actual as-grown MoS2 bilayer samples using the trained CNN model.
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extraction with advanced techniques, such as dilated
convolutions and spatial pyramid pooling. The FCN model,
tailored for semantic segmentation, ensures that the output size
matches the input. Meanwhile, LR-ASPP, a variant of
DeepLabV3′s ASPP, aims for efficiency in mobile and edge
computing. Notably, U-Net, recognized for its effectiveness in
biomedical image segmentation, features a distinctive U-
shaped architecture. Our implementation utilized Python 3.8
and Pytorch 1.10,46 with U-Net emerging as the most adept in
capturing the nuances of shape, particularly evident in cases of
distorted triangular overlays. Compared to the original
micrographs, U-Net’s segmentation reveals enhanced detail
in both monolayer and bilayer configurations (Figure 2(n)),
affirming its selection as the primary model for our study. For a
comprehensive understanding of the labeling process and
additional model comparisons, readers can refer to the
Supporting Information (Section 2.1).

Once the pixels in an experimental image have been
classified, either by a human or by any of the trained DL
models described in Sec. I of SI, and the resulting flakes color-
coded according to their thickness, it is possible to determine
the twist angle formed between an underlying single-layer and
an overlying second layer using appropriate image analysis
software, such as OpenCV.41 It contains useful functionalities

to e.g. determine contour lines enclosing a particular flake and
measure the corresponding enclosed area, fit an approximate
polygonal shape, or find the minimum desired polygonal shape
that encloses a given set of pixels in the image. Given that
TMDs typically exhibit a triangular shape, we employ triangles
as the chosen polygonal shape, leading to an estimation of the
corner positions. By carrying out this process for each of the
layers in a flake, it is possible to estimate the twist angles
between each pair of layers from their corner positions by
simple trigonometric calculation.

Nevertheless, the use of image analysis software as described
above has several disadvantages. First, it is not easily
automated, requiring human intervention and thus resulting
in a slow and tedious process that cannot be applied efficiently
on a large scale. A better alternative is to train a DL model to
directly predict the twist angles from the appropriately cropped
experimental image of a twisted bilayer [see Figure 1(d,e)].
Training such a model would require a large database of
preprocessed experimental images, for which the twist angles
had been previously determined. However, there is a more
practical and expedient procedure, which consists of employing
a synthetically generated image database. As can be seen in
Figure 1 and Figure 2, experimental samples of MoS2 bilayer
flakes typically consist of two roughly triangular shapes, with

Figure 4. Performance evaluation of the twisted bilayer MoS2 identification by the CNN model. (a)−(h) Predicted angles for different flakes,
showcasing the efficacy of the CNN-based model (indicated in the bottom-left corner of each subfigure) in comparison to angles obtained via
OpenCV (displayed in the bottom-right corner). It is noteworthy that in numerous instances OpenCV was unable to identify the angles, resulting
in absent data in the bottom-right corner of some subfigures. (i) Histogram of the quantity of bilayer MoS2 at various twist angles. (j)−(u) Second
harmonic generation (SHG) and thickness identification for the corresponding samples with (v) serving as the legend. (w) Comparison between
true and predicted twist angles θ using the artificially generated test data sets and SHG data set in (j)−(u), respectively.
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the rotation angles in the range of 0 to 60°. It is trivial to
generate large numbers of synthetic images of rotated pairs of
superimposed triangles. This adds the advantage that such
images can be made to sample homogeneously all possible
twist angles, while training on labeled experimental images
would result in a bias toward the experimentally observed twist
angles. It is even possible to generate synthetic images that
mimic more faithfully the experimental ones, by, e.g., cropping
corners of the triangles or introducing random noise to their
edges.

In the process of generating the data sets for training the
second neural network, a sequence of images is created,
including double-layered polygons that morph sequentially
from hexagons to truncated triangles and finally into triangles
(as illustrated in Figure 3(a)). Formation of the outer polygon
begins with the careful selection of random variables such as
central coordinates, side lengths, and rotational angles,
promoting visual diversity. Once the outer polygon is defined,
an inner polygon is positioned within it. The inner polygon’s
location, rotation, and side length are determined through
random selection, while ensuring its side length is equal to or
less than the outer polygon’s, preserving their hierarchical
nesting and maintaining distinct spatial separation between
them.

The angle formed by a vertex of each polygon and its
respective center is calculated, providing a measure to assess
the angular difference between them. This angular variation is
then incorporated into the filename of the stored image,
serving as a perceptible geometric attribute label. Conse-
quently, the generated data sets, enriched with clear geometric
annotations and offering a wide variety of forms, become a

valuable resource for training data sets in the subsequent
recognition of twist angles in CVD-grown samples.

After that, a Residual Network (ResNet)47 Convolutional
Neural Network (see Figure 3) is trained to predict the twist
angle by regression to a synthetically generated database of
more than 10,000 images. The input images are RGB images
with a resolution of 512 × 512 pixels obtained from Figure
3(a). In model design, the choice between using a single-layer
or multilayer approach for regression tasks hinges on the
complexity of the data relationship. A direct 512 to 1
dimension reduction in the network might be suitable for a
simpler, linear problem, while a more gradual decrease, such as
512−256−128−1, tends to perform better for capturing
complex, nonlinear relationships in the data (as shown in
Figure 3(b) and (c)). In the latter approach, additional layers
aid the model in learning nuanced data patterns, offering a
potential boost in the predictive accuracy for intricate
problems. Upon being input into the ResNet network, the
final angles are obtained, as illustrated in Figure 3(b) and (c).
After training the CNN regression model, the real as-grown
bilayer MoS2 micrographs after the first deep learning model
are used as input, and the twist angle of the bilayer MoS2 is
obtained through this second neural network. The capabilities
of the model are illustrated in Figure 4. The identification of
twist bilayer MoS2 using OpenCV is also demonstrated in
Figure S8 and shown in Figure 4 as a comparison for the DL
methodology. It can be concluded that the CNN regression
model we used here can identify the twist angle in bilayer
MoS2 while being tolerant of shape irregularities. For bilayer
graphene synthesized through CVD, it is evident that different
edges can correspond to varying twist angles in the secondary
layer12 (Figure S15). Demonstrably, our methodology

Figure 5. Moire ́ phonons in twisted CVD-grown bilayer MoS2. (a) Raman spectra of CVD-grown bilayer MoS2 with the excitation energy (Eex) of
2.54 eV. Peaks assigned to Moire ́ phonons modes28 including FTA, FLA, and FA1′ modes are marked by red, blue, and gray arrows, respectively.
The dashed lines correspond to the peak position of second-order Raman modes, and the E′ and A1′ modes are also marked out. (b, c) Comparison
between the calculated (Cal, lines) and experimental (Exp, circles) frequencies of twist-angle-dependent Moire ́ phonons including (b) FTA, FLA,
and (c) FA1′ phonons.
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proficiently enables the identification of such twist angles
within hexagonally shaped, CVD-grown bilayer graphene,
offering insightful exploration into its structural intricacies, as
depicted in Figure S15.

To verify the identification of the twist angles of CVD-grown
bilayer MoS2, SHG measurements are performed on these
samples with various twist angles as shown in Figure 4(j)−(v).
The true and predicted twist angle θ using the artificially
generated test data sets and SHG data set is summarized in
Figure 4(w), showing the reasonable accuracy of our model.

One possible application of our methodology could be to
select more samples for probing their optical property
correlations. The strain, defects, and doping of the
inhomogeneity of the individual bilayer CVD-grown flakes
could influence the Raman spectra, making the interpretation
of Raman signal challenging.48−54 Figure 5(a) shows the
Raman spectra of the CVD-grown bilayer MoS2 samples with
twist angles ranging from 0 to 60°. The three vertical dashed
lines correspond to the peak positions of the second-order
Raman modes E′(M)LO2-LA(M) (∼150 cm−1), A1′(M)-LA(M)
(∼178 cm−1), and TA(K) (∼190 cm−1).55 In addition, several
branches of Moire ́ phonons are observed in the Raman spectra.
Moire ́ phonons refer to zone-center phonons in twisted bilayer
MoS2, which are folded from the off-center phonons in
monolayer MoS2 due to the periodic Moire ́ potential and thus
exhibit a shift in peak frequency with the change of twist
angle.28 The arrows indicate the assigned Moire ́ phonon
modes, including folded TA (FTA), folded LA (FLA,) and
folded A1′ (FA1′) modes, which exhibit high-frequency
sensitivity to the twist angle, similar to the previous results.28

Figure 5(b),(c) summarizes the experimental and calculated
frequencies of the three Moire ́ phonon modes for comparison.
The experimental peak positions of Moire ́ phonons agree well
with the theoretical ones28 based on the twist angle of twisted
bilayer MoS2 and the phonon dispersion of monolayer MoS2.
Note that the frequencies of the FA1′ mode on the CVD-
grown bilayer MoS2 diverging relatively from the theoretical
curve in the range of 24.6° to 34.7° may arise for different
reasons, where strain is very likely as E′ and A1′ modes also
show behaviors of strain-induced shifts.51 We did not discuss
the results of the twist angles at 0−5° and 55−60° in detail
because the case is very complicated due to the phonon
renormalization induced by lattice relaxation.8

Another possible application of our methodology could be
the optimization of the large-scale growth for bilayer atomic
materials (as shown in Figure S17). In addition, the exfoliated
flakes with regular shape could also be the next possible
applications of our model (as shown in Figure S18).56,57 This
thorough workflow acts as a clear guide, detailing the
methodology utilized in the study for the precise identification
and analysis of twisted bilayers in TMDs grown via CVD. This
method can also be adapted to include graphene (as shown in
Figure S15) and hBN, as well as their heterostructures.

In conclusion, we have demonstrated a robust and efficient
methodology for the identification and analysis of twisted
bilayers in TMDs by using deep learning and OpenCV
techniques. Our approach, which combines optical micro-
graphs, deep learning models, and OpenCV, provides accurate
and comprehensive predictions of the thickness properties and
twist angles of bilayer TMDs. The comparison of various deep
learning models revealed that the U-Net model exhibits
superior performance in terms of global accuracy, mean
intersection over union, and processing speed.

Our methodology can be extended to other two-dimensional
materials grown by CVD, including both homostructures and
heterostructures, highlighting its versatility and broad applic-
ability in the field of 2D materials analysis. Our data sets and
codes are made freely available as a service to the community.
We hope that, by facilitating and automating the structural
analysis of TMDs, this work will contribute to further
advancements in the field of TMDs and 2D materials in
general and thus also the rapid growing Autonomous lab using
AI.58

■ METHODS
A description of the data pipeline, data preparation, deep
learning training of the semantic segmentation model, and
twist angle identification by OpenCV can be found in the SI.
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